Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations
نویسندگان
چکیده
Discretization and linearization of the steady-state Navier-Stokes equations gives rise to a nonsymmetric indeenite linear system of equations. In this paper, we introduce preconditioning techniques for such systems with the property that the eigenvalues of the preconditioned matrices are bounded independently of the mesh size used in the discretization. We connrm and supplement these analytic results with a series of numerical experiments indicating that Krylov subspace iterative methods for nonsymmetric systems display rates of convergence that are independent of the mesh parameter. In addition, we show that preconditioning costs can be kept small by using iterative methods for some intermediate steps performed by the preconditioner.
منابع مشابه
One-dimensional Preconditioning of Krylov Subspace Methods for the Navier{Stokes Equations
The stationary Navier{Stokes equations are solved in 2D with preconditioned Krylov subspace methods, where the preconditioning matrix is derived from a semi-implicit Runge{Kutta scheme. By this approach the spectrum of the coeecient matrix is improved. Numerical experiments for the ow over a semi-innnite at plate show that the preconditioning substantially improves the convergence rate. The num...
متن کاملThe Gcr-simple Solver and the Simple-type Preconditioning for Incompressible Navier-stokes Equations
The discretization of incompressible Navier-Stokes equation leads to a large linear system with a nonsymmetric and indefinite coefficient matrix. Many methods are known to overcome these difficulties: Uzawa method, SIMPLE-type methods, penalty method, pressure correction method, etc. In this paper, Krylov accelerated versions of the SIMPLE(R) methods: GCR-SIMPLE(R) are investigated, where SIMPL...
متن کاملA Preconditioned Scheme for Nonsymmetric Saddle-Point Problems
In this paper, we present an effective preconditioning technique for solving nonsymmetric saddle-point problems. In particular, we consider those saddlepoint problems that arise in the numerical simulation of particulate flows—flow of solid particles in incompressible fluids, using mixed finite element discretization of the Navier–Stokes equations. These indefinite linear systems are solved usi...
متن کاملAn Efficient Solver for the Incompressible Navier-Stokes Equations in Rotation Form
We consider preconditioned iterative methods applied to discretizations of the linearized Navier–Stokes equations in twoand three-dimensional bounded domains. Both unsteady and steady flows are considered. The equations are linearized by Picard iteration. We make use of the rotation form of the momentum equations, which has several advantages from the linear algebra point of view. We focus on a...
متن کاملSolving the linearized Navier–Stokes equations using semi-Toeplitz preconditioning
A semi-Toeplitz preconditioner for the linearized Navier– Stokes equation for compressible flow is proposed and tested. The preconditioner is applied to the linear system of equations to be solved in each time step of an implicit method. The equations are solved with flat plate boundary conditions and are linearized around the Blasius solution. The grids are stretched in the normal direction to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 17 شماره
صفحات -
تاریخ انتشار 1996